Bài 4. ÔN TẬP CHƯƠNG III

MX

Tìm a sao cho ∀x, ta luôn có

-1≤\(\frac{x^2+5x+a}{2x^2-3x+2}\)≤7

NL
7 tháng 3 2019 lúc 23:59

\(\frac{x^2+5x+a}{2x^2-3x+2}\ge-1\Leftrightarrow\frac{x^2+5x+a}{2x^2-3x+2}+1\ge0\Leftrightarrow\frac{3x^2+2x+a+2}{2x^2-3x+2}\ge0\)

\(\Leftrightarrow3x^2+2x+a+2\ge0\) \(\forall x\) (do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\))

\(\Rightarrow\Delta'=1-3\left(a+2\right)=-5-3a\le0\Rightarrow a\ge\frac{-5}{3}\) (1)

Lại có: \(\frac{x^2+5x+a}{2x^2-3x+2}\le7\Leftrightarrow\frac{x^2+5x+a}{2x^2-3x+2}-7\le0\Leftrightarrow\frac{-13x^2+26x+a-14}{2x^2-3x+2}\le0\)

\(\Leftrightarrow-13x^2+26x+a-14\le0\) \(\forall x\)

\(\Rightarrow\Delta'=169+13\left(a-14\right)\le0\Rightarrow a\le-1\) (2)

Kết hợp (1) và (2) ta được: \(\frac{-5}{3}\le a\le-1\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
DA
Xem chi tiết
NL
Xem chi tiết
HB
Xem chi tiết
PK
Xem chi tiết
HL
Xem chi tiết
TD
Xem chi tiết
HB
Xem chi tiết