a/ Ta có :
\(x+y=20\)
\(\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\Leftrightarrow x=6\\\dfrac{y}{7}=2\Leftrightarrow y=14\end{matrix}\right.\)
Vậy ..
b/ Ta có :
\(x-y=6\)
\(\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=2\Leftrightarrow x=10\\\dfrac{y}{2}=2\Leftrightarrow y=4\end{matrix}\right.\)
Vậy ..
A/d t/c of dtsbn t.có
x/3=y/7=>x+y/3+7=20/10=2
x/3=2=>x=6
y/7=2=>y=14
x/5=y/2=>x-y/5-2=6/3=2
x/5=2=>x=10
y/2=2=>y=4
a,
a)x3=y7và x+y=20
=> \(\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
Theo tính chất
=> \(\dfrac{x}{3}=2\Rightarrow x=3.2\Rightarrow x=6\)
\(\dfrac{y}{7}=2\Rightarrow x=7.2\Rightarrow x=14\)
Vậy : x = 6 , y = 14
b)x5 =y2 và x-y=6
=> \(\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
Theo tính chất
=> \(\dfrac{x}{5}=2\Rightarrow x=5.2\Rightarrow x=10\)
\(\dfrac{y}{2}=2\Rightarrow y=2.2\Rightarrow y=4\)
Vậy x= 10 , y =4
a) Đặt \(\dfrac{x}{3}=\dfrac{y}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Ta có: 3k + 7k = 20
\(\Rightarrow\)10k = 20
\(\Rightarrow\) k = 2
Thay k = 2, ta có:
\(\left\{{}\begin{matrix}x=3.2\\y=7.2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=21\end{matrix}\right.\)
Vậy ...
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Ta có: \(\text{5k - 2k = 6}\)
\(\Rightarrow3k=6\)
\(\Rightarrow k=2\)
Thay k = 2, ta có:
\(\left\{{}\begin{matrix}x=5.2\\y=2.2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
Vậy ...