Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Tam giác ABC có đường cao AD. Đường thẳng d song song với BC, cắt AB, AC và đường cao AD theo thứ tự tại các điểm B', C', D' ( hình 12, SGK VN8)
a. Chứng minh \(\dfrac{AD'}{AD}\)=\(\dfrac{BC'}{BC}\)
b. Áp dụng: Cho biết AD' =\(\dfrac{1}{3}\)AD và diện tích tam giác ABC là 73.5 cm2. Tính diện tích tam giác AB'C'.
Bài 2: Tam giác ABC cps BC=15cm. Trên đường cao AH lấy điểm I,K sao cho AK=IK=IH. Qua I và K lần lượt vẽ các đường PQ//BC, MN//BC.
a. Tính độ dài các đoạn thẳng MN và PQ
b. Tính diện tích tam giác MNQP, biết rằng diện tích của tam giác ABC là 360cm2
Các bạn giúp mình với. Cảm ơn các bạn nhiều
cho tam giác abc vuông tại a, đường cao ah , phân giác ad . kẻ hk // ab , hp//ac .
a/ chứng minh akhp là hình chữ nhật
b/ chứng minh ac.bd = ab.cd
c/ biết ab=3cm , ac=4cm . tính kp và diện tích tam giác ahd
Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID
Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Cho tam giác ABC cân tại A. Phân giác góc C cắt AB tại D. Biết AC = 24cm, BC = 12cm.
a) Tính AD, DB.
b) Đường thẳng vuông góc với CD tại C cắt đường thẳng AB kéo dài tại E. Tìm BE.
1.Cho tam giác ABC, D là điểm trên AC sao cho AB=CD. Gọi M,N lần lượt là trung điểm của AD, BC. Chúng minh rằng MN song song với phân giác của góc BAC.
2. Cho tam giác ABC, đường phân giác AD, trung tuyến AM. Đường thẳng đi qua D, song song với AB, cắt AM tại I. BI cắt AC tại E. Chứng minh AB=AE.