Cho tam giác ABC vuông tại B có BC = 6 cm và đoạn thẳng EF có độ dài không đổi song song với một cạnh bất kì và cắt 2 cạnh còn lại của tam giác ABC. Hãy sử dụng định lí Talet để tính độ dài AB. ( lưu ý có thể cho thêm độ dài một đoạn thẳng khi đặt đoạn EF )
Cho tam giác ABC có AD là đường trung tuyến. Lấy điểm O nằm giữa A và D. Qua O vẽ đường thẳng d cắt các tia AB, AC tại E và F. Hãy xác định vị trí của điểm O để BE / AE + CF / AF = 1.
1.Cho tam giác vuông cân ABCcos góc C= 90 độ. Từ C kẻ một tia vuông góc với trung tuyền AM cắt AB ở D. Hãy tính tỉ số ED/DA.
2. cho điểm E thuộc cạnh AC của tam giác ABC. Qua B kẻ một đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Cm AN//CM
3.Cho hình thang ABCD có BC//AD . Trên AC kéo dài lấy 1 điểm P tùy ý. Dường thẳng qua P và trung điểm của BC cắt AB tại M và đường thẳng qua P và trung điểm của AD cắt CD tại N . CMR MN//AD
4. Tứ giác ABCD có M, N lần lượt là trung điểm của các đường chéo AC và BD. Gọi G là trọng tâm Tam giác ABC, nối GC cắt MN tại O. Chứng minh OC=3OG
5. Cho hình thang ABCD ) AB//CD) với AB=a; CD=b. Gọi I là giao điểm của hai đương chéo. Đường thẳng qua I và song song AB cắt hai cạnh bên tại E và F. CMR: EF=\(\frac{2ab}{a-b}\)
6. Hình bình hành ABCD. Gọi M là một điểm trên đường chéo AC. VẼ ME vuông góc với AB và MF vuông góc với AD. CMR\(\frac{ME}{MF}\)=\(\frac{AD}{AB}\)
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC
1.Hinh thang ABCD đáy lớn ;CD. Qua A vẽ đường thẳng AK // BC cắt BD tại E. Qua B vẽ đường thẳng BI // AD cắt AC tại F ( K; I thuộc CD). CMR
a, EF//AB
b, \(_{AB^2}\)=CD.EF
2. Cho 1 điểm M nằm tring tam giác ABC. Đương thẳng qua M và trọng yaam G của tam giác cắt BC , CA và AB theo thứ tự D,E,F. CMR \(\frac{MD}{GD}+\frac{ME}{GE}+\frac{MF}{GF}=3\)
3.Cho tam giác ABC cân tại A. Hai điểm D và E theo thứ tự thay đổi trên AB và BC. Kẻ DF vuông góc BC. CMR: nếu EF=\(\frac{BC}{2}\)thì đường thẳng qua E và vuông góc với DE luôn đi qua I diểm cố định.
4. Cho tam giác ABC trọng tâm G , đường thẳng d qua G cắt các cạnh AB và AC tại M<N. CMR:AM.AN=AM.NC+AN.MB
5. Cho tam giác Abc vuông tại A. Giả sử đường cao AH , trung tuyến BM, và phân giác trong CN đồng quy. CMR BH=AC
6. CHo tâm giác ABC. AM, AN và CP cắt nhau tại I. TÌm I để\(\frac{AI}{IM}+\frac{BI}{IN}+\frac{CI}{IP}\) nhỏ nhất
7. Cho tứ giác ABCD. Đường thẳng A// BC tại P và đường thẳng qua B// AD cắt AC ở Q.CMr PQ//CD
Cho \(\Delta ABC\) có \(AB=4cm;AC=4,5cm.\) Trên AB và AC lấy các điểm M và N sao cho AM=AN=3cm. Gọi O là giao điểm của BN và CM. Tính \(\frac{OB}{ON}+\frac{OC}{OM}\)
Dùng định lý Talet giúp mk vs ^^
Cho tam giác ABC.Trên cạnh BC lấy điểm D sao cho \(\frac{DB}{DC}\) \(=\frac{1}{2}\). Đường thẳng qua D song song với AB cắt AC tại E, đường thẳng qua D song song với AC cắt AB tại F
a) So sánh tỉ số AF/AB và AE/AC
b) Gọi M là trung điểm AC. CMR EF // BC
c) Giả sử DB/DC = k. Tìm k để Eệ // BC
Cho tam giác ABC , các đường trung tuyến BD,CE ( D thuộc AC, E thuộc AB). Gọi M là điểm bất kì thuộc BC. Vẽ MG // BD ( G thuộc AC) , MH // CE ( H thuộc AB). Cmr:
a) BD,CE chia GH thành 3 phần bằng nhau
b)OM đi qua trung điểm GH ( O là trọng tâm tam giác ABC)
( Bài này khó quá, các bạn giúp mình nhé, mình cảm ơn)
Trên phần kéo dài của đường chéo AC của hình thang ABCD (BD // AD) về phái C lấy điểm P tùy ý. Các đường thẳng đi qua P và các trung điểm 2 đáy hình thang cắt các cạnh bên AB, CD tại M, N. Chứng minh rằng:
+, \(\frac{MB}{MA}=\frac{NC}{ND}\)
+, MN // AB // CD