\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+1+\sqrt{3}-1\)
\(=2\sqrt{3}\)
mũ 2 với căn lớn bên ngoài sẽ triệt tiêu cho nhau
=\(\sqrt{3}+1+1-\sqrt{3}=2\)
\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+1+\sqrt{3}-1\)
\(=2\sqrt{3}\)
mũ 2 với căn lớn bên ngoài sẽ triệt tiêu cho nhau
=\(\sqrt{3}+1+1-\sqrt{3}=2\)
Giải phương trình
\(\frac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\frac{5\left(x-1\right)\left(x+\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Bài toán :
Giải phương trình :
\(\frac{3.\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-5\right)}+\frac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Nhờ tính hộ
\(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)\)
a. \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)
b. \(3\left(2+\sqrt{x}\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)
c. \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)
d. \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^2\)
Giải giúp mình ạ
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
Giải phương trình:
\(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2017\)
Mong các bạn giải chi tiết một chút
Xin cảm ơn!!!
a, \(A=\left(\sqrt{2}+1\right)[\left(\sqrt{2}\right)^2+1][(\sqrt{2})^4+1][\left(\sqrt{2}\right)^8+1][1\left(\sqrt{2}\right)^{16}+1]\)
b, \(B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+1\sqrt{2020}}\)
c,\(C=^3\sqrt[]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\)
Giải phương trình:
a) \(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=3\)
b) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}=4-2x\)