\(=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-1-\sqrt{5}-1\right)=-\sqrt{2}\)
\(=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-1-\sqrt{5}-1\right)=-\sqrt{2}\)
chứng minh đẳng thúc
\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
a)\(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7-2}}-\dfrac{\sqrt{7-5}}{2}\) =4+\(\sqrt{11-3\sqrt{7}}\)
b)\(\dfrac{\sqrt{x+\sqrt{y}}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x-\sqrt{y}}}{2\left(\sqrt{x+\sqrt{y}}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x-\sqrt{y}}}\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
a, \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}=4+\sqrt{11}-3\sqrt{7}\)
b, \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Các bạn giúp mk vs, Mk cần gấp.
Bài 1 Thực hiện các phép tính sau:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
f) 2\(\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}\)
Bài 1 : Thực hiện phép tính , rút gọn biểu thức
A = (\(\sqrt{5}\)-2)(\(\sqrt{5}\)+2)
B = (\(\sqrt{5}\) +\(\sqrt{3}\))(5-\(\sqrt{15}\))
C = (\(\sqrt{45}+\sqrt{63}\))(\(\sqrt{7}-\sqrt{5}\))
D = \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
E = \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
F = \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
G = \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
H = \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
I = \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
K = \(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
a) \(\dfrac{5-2\sqrt{ }5}{\sqrt{ }5-2}-\dfrac{11}{4+\sqrt{ }5} \)
b)\(\sqrt{9+4\sqrt{ }5-\sqrt{ }6-2\sqrt{ }5}\)
c)\(\sqrt{17-3\sqrt{ }32+\sqrt{ }17+\sqrt{ }32}\)
Thực hiện phép tính:
1)A=\(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right)\) . \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
2)B = \(\dfrac{1}{1 +\sqrt{2}}\) +\(\dfrac{1}{\sqrt{2}+\sqrt{3}}\)+.....+\(\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
3)C = \(\sqrt[3]{7+5\sqrt{2}}\) - \(\sqrt[3]{7-5\sqrt{2}}\)
4) D = \(\sqrt[3]{9+4\sqrt{5}}\)+\(\sqrt[3]{9-4\sqrt{3}}\)