H24

so sánh: \(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

và \(2+\sqrt{5}\)

H9
11 tháng 8 2023 lúc 9:30

Đặt: 

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)

\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)

\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)  

\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

Mà: \(4\sqrt{5}>1\)

Nên: \(A^2< B^2\)

\(\Rightarrow A< B\)

Bình luận (0)
NT
11 tháng 8 2023 lúc 9:19

Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

=>A^2=(căn 10)^2=10=9+1

Đặt B=2+căn 5

=>B^2=(2+căn 5)^2=9+4căn 5

1<4căn 5

=>9+1<9+4căn 5

=>A^2<B^2

=>A<B

Bình luận (0)
VH
11 tháng 8 2023 lúc 10:24

Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(\Rightarrow A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=6+2\sqrt{9-5}=6+2.2=10\)

\(B=2+\sqrt{5}\Rightarrow B^2=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

\(>9+1=10=A^2\)

\(\Rightarrow B^2>A^2\Rightarrow B>A\)

Vậy, B>A

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TN
Xem chi tiết
NP
Xem chi tiết
DA
Xem chi tiết
MB
Xem chi tiết
LT
Xem chi tiết
BB
Xem chi tiết
NC
Xem chi tiết
3P
Xem chi tiết