\(=\sqrt{16-8\sqrt{3}+3}+\left(2+\sqrt{3}\right)^2-3\sqrt{3}\\=\sqrt{\left(4-\sqrt{3}\right)^2}+4+4\sqrt{3}+3-3\sqrt{3}\\ =4-\sqrt{3}+7+\sqrt{3}\\ =11 \)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(=\sqrt{16-8\sqrt{3}+3}+\left(2+\sqrt{3}\right)^2-3\sqrt{3}\\=\sqrt{\left(4-\sqrt{3}\right)^2}+4+4\sqrt{3}+3-3\sqrt{3}\\ =4-\sqrt{3}+7+\sqrt{3}\\ =11 \)
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
Rút gọn biểu thức \(\dfrac{\sqrt{3x^2-12x+12}-x+2}{x-2}\) khi x>2 được kết quả là:
A. \(1-\sqrt{3}\)
B. \(\sqrt{3}.\left(x-2\right)\)
C. \(\sqrt{3}-1\)
D. \(-\sqrt{3}.\left(x-2\right)\)
Bài 1: Tính và rút gọn biểu thức:
\(A=\left(\sqrt{5}+3\right)\left(5-\sqrt{15}\right)\)
\(B=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(C=1-\left(\sqrt{45}-\sqrt{20}-\sqrt{3}\right)\left(\sqrt{20}-\sqrt{45}-\sqrt{3}\right)\)
\(D=\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{2}{3}}\right):\frac{1}{\sqrt{6}}\)
cho biểu thức A=\(\left(\dfrac{4x-9}{2\sqrt{x}-3}+\sqrt{x}\right)\cdot\dfrac{1}{x+2\sqrt{x}+1}\)
a)rút gọn
rút gọn M=\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
Cho biểu thức \(A=\left(\dfrac{a\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}-\dfrac{2\left(\sqrt{a}-3\right)}{\sqrt{a}+1}-\dfrac{\sqrt{a}+3}{\sqrt{a}-3}\right):\dfrac{a+8}{a-1}\)với a \(\ge0;a\ne9\)
Rút gọn biểu thức A.
Rút gọn biểu thức \(\frac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
cho biểu thức:
\(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a) rút gọn P.
b) tìm a để P < \(7-4\sqrt{3}\)
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)