\(P=\dfrac{sin2x+sinx}{\dfrac{1}{2}\cdot cosx\cdot sin2x+sin2x}=\dfrac{sinx\left(2cosx+1\right)}{sin2x\left(\dfrac{1}{2}cosx+1\right)}\)
\(=\dfrac{2cosx+1}{2\cdot cosx\cdot\left(\dfrac{1}{2}cosx+1\right)}\)
\(P=\dfrac{sin2x+sinx}{\dfrac{1}{2}\cdot cosx\cdot sin2x+sin2x}=\dfrac{sinx\left(2cosx+1\right)}{sin2x\left(\dfrac{1}{2}cosx+1\right)}\)
\(=\dfrac{2cosx+1}{2\cdot cosx\cdot\left(\dfrac{1}{2}cosx+1\right)}\)
Cm đẳng thức sau: Mn giúp mình bài này với ^^
\(\dfrac{sinx}{sinx-cosx}-\dfrac{cosx}{sinx+cosx}=\dfrac{1+cot^2x}{1-cot^2x}\)
chứng minh
1-sin(7π-x)/ cos2x +sin2x /1+sinx + 1- cos. (5π/2-x)=2/1+sinx
tính B=\(\sin\left(\dfrac{\pi}{4}+x\right)-\cos\left(\dfrac{\pi}{4}\right)-x\)
1; tính B \(=4sin^4\dfrac{\pi}{16}+2cos\dfrac{\pi}{8}\)
2;tính C= \(\dfrac{\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}}{\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}}\)
3; tính D=\(\sin\dfrac{\pi}{9}-sin\dfrac{5\pi}{9}+sin\dfrac{7\pi}{9}\)
Chứng minh các đẳng thức :
a) \(\dfrac{1+(sin)^{2}a}{1-(sin)^{2}a}\)= \(1+2tan^{2}a\)
b) \(tan^{2}a - sin^{2}a = tan^{2}a.sin^{2}a\)
c) \(\dfrac{cosa}{1+sina} + tan a = \dfrac{1}{cosa}\)
d) \(\dfrac{tanx}{sinx} - \dfrac{sinx}{cotx} = cosx\)
Các bạn giúp mình với nha. Cảm ơn ạ
1. Rút gọn biểu thức sau: C = \(sin6x\times cot3x-cos6x\)
2. Chứng minh các đẳng thức sau:
a) \(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
b) \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a+sin^2b}=cot^2a\times cot^2b-1\)
3. Cho \(\Delta ABC\). Chứng minh rằng: \(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times cos\frac{B}{2}\)
4. Chứng minh: Nếu \(sina=2sin\left(a+b\right)\) thì \(tan\left(a+b\right)=\frac{sina}{cosb-2}\)
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!
1;tính A= \(\dfrac{1}{\cos290^o}+\dfrac{1}{\sqrt{3}\sin250^o}\)
2; tính B = (1+tan 20o) ( 1+tan25o)
3; tính tan9o-tan27o-tan63o+ tan81o
4; tính D= \(\sin^2\dfrac{\pi}{9}+\sin^2\dfrac{2\pi}{9}+\sin\dfrac{\pi}{9}\sin\dfrac{2\pi}{9}\)
5; tính E;= \(\sin\dfrac{\pi}{32}\cos\dfrac{\pi}{32}\cos\dfrac{\pi}{16}\cos\dfrac{\pi}{8}\)
Chứng minh 2 cos\(\left(\frac{\pi}{4}+x\right)cos\left(\frac{\pi}{4}-x\right)=cos2x\)
Tính giá trị các biểu thức
\(A = \dfrac{2 tan15°}{1- cot^275°}\)\(B = sin \dfrac{π}{16}.cos\dfrac{π}{16}.cos\dfrac{π}{8}\)