PV

Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi số đó chia cho 2737 dư bao nhiêu?

NT
24 tháng 3 2016 lúc 11:17

gọi số dã cho là A, theo đề bài ta có:
A = 7.a + 3 = 17.b + 12 = 23.c + 7
mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39
= 7.(a + 6) = 17.(b + 3) = 23.(c + 2)
như vậy A+39 đồng thời chia hết cho 7,17 và 23. 
nhưng 7,17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39)  7.17.23 hay (A+39)  2737
Suy ra A+39 = 2737.k suy ra A = 2737.k - 39 = 2737.(k-1) + 2698
Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737

Bình luận (0)
NT
24 tháng 3 2016 lúc 11:48

gọi số dã cho là A, theo đề bài ta có:


A = 7.a + 3 = 17.b + 12 = 23.c + 7


mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39


= 7.(a + 6) = 17.(b + 3) = 23.(c + 2)


như vậy A+39 đồng thời chia hết cho 7,17 và 23.


nhưng 7,17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên : (A + 39) 7.17.23 hay (A+39)  2737


Suy ra A+39 = 2737.k suy ra A = 2737.k - 39 = 2737.(k-1) + 2698


Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737

Bình luận (1)
LT
2 tháng 10 2016 lúc 9:00

Theo đầu bài, ta có:
A=7.a+4
=17.b+3
=23.c+11 (a,b,c  N)

nếu ta thêm 150 vào số đã cho thì ta lần lượt có:
A+150=7.a+4+150=7.a+7.22=7.(a+22)
=17.b+3+150=17.b+17.9=17.(b+9)
=23.c+11+150=23.c+23.7=23.(c+7)

như vậy A+150 đồng thời chia hết cho 7,17 và 23. nhưng 7, 17 và 23 là ba sô đôi một nguyên tố cùng nhau, suy ra A+150 chia hết cho 7.17.13=2737

vậy A+150=2737k (k=1;2;3;4...)

suy ra: A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k'+2587

do 2587<2737 nên 2587 là số dư trong phép chia số đã cho A cho 2737 

 

Bình luận (0)
TC
14 tháng 4 2021 lúc 12:51

Dislike

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
LT
Xem chi tiết
KN
Xem chi tiết
TH
Xem chi tiết
TN
Xem chi tiết
MN
Xem chi tiết
KN
Xem chi tiết
PD
Xem chi tiết
LD
Xem chi tiết