KN

Tìm các số a và b sao cho x3 + ax + b chia cho x + 1 thì dư 7 và chia cho x - 3 thì dư 5.

AH
3 tháng 1 2017 lúc 10:15

Đặt $f(x)=x^3+ax+b$. Theo định lý Bezout về dư trong đa thức thì số dư của $f(x)$ cho $x-a$ chính là $f(a)$. Do đó:

\(\left\{\begin{matrix} f(-1)=-1-a+b=7\\ f(3)=27+3a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-15}{2}\\ b=\frac{1}{2}\end{matrix}\right.\)

\(a,b\not\in \mathbb{Z}\Rightarrow \) bài toán đúng với TH $x$ chẵn.

Bình luận (0)
LT
5 tháng 11 2018 lúc 21:20

Đặt f(x)=x3+ax+bf(x)=x3+ax+b. Theo định lý Bezout về dư trong đa thức thì số dư của f(x)f(x) cho x−ax−achính là f(a)f(a). Do đó:

{f(−1)=−1−a+b=7f(3)=27+3a+b=5⇒{a=−152b=12{f(−1)=−1−a+b=7f(3)=27+3a+b=5⇒{a=−152b=12

tick đúng
Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết
CX
Xem chi tiết
MN
Xem chi tiết
LT
Xem chi tiết
NT
Xem chi tiết
DS
Xem chi tiết