1: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
2: Ta có: ΔABD=ΔEBD
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
3: \(AD=\sqrt{BD^2-AB^2}=4\left(cm\right)\)
=>DE=4(cm)
4: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
AK=EC
Do đó: ΔADK=ΔEDC
Suy ra: \(\widehat{ADK}=\widehat{EDC}\)
=>\(\widehat{ADK}+\widehat{ADE}=180^0\)
hay K,D,E thẳng hàng