ĐK \(x\ne0\)
\(\dfrac{x^4+3x^2+1}{x^3+x^2-x}=3\)
\(\Leftrightarrow\) \(\dfrac{x^4+3x^2+1}{x^3+x^2-x}=\dfrac{3\left(x^3+x^2-x\right)}{x^3+x^2-x}\)
\(\Leftrightarrow x^4+3x^2+1=3x^3+3x^2-3x\)
\(\Leftrightarrow x^4+3x^2+1-3x^3-3x^2+3x=0\)
\(\Leftrightarrow x^4-3x^3+3x+1=0\)
Chia cả 2 vế cho \(x^2\) ta được :
\(x^2-3x+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)-3\left(x-\dfrac{1}{x}\right)=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2-2-3\left(x-\dfrac{1}{x}\right)=0\)
Đặt \(x-\dfrac{1}{x}=t\) thì phương trình trở thành :
\(t^2-3t-2=0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
Với \(t=1\) :
\(\Leftrightarrow x-\dfrac{1}{x}=1\)
\(\Leftrightarrow\) \(\dfrac{x^2}{x}-\dfrac{1}{x}=\dfrac{x}{x}\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Delta=1^2+4=5>0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{5}}{2}\\x_2=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Với \(t=2\) :
\(\Leftrightarrow x-\dfrac{1}{x}=2\)
\(\Leftrightarrow\) \(\dfrac{x^2}{x}-\dfrac{1}{x}=\dfrac{2x}{x}\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Delta=\left(-2\right)^2+4=8>0\)
\(\Rightarrow\left[{}\begin{matrix}x_3=\dfrac{2+\sqrt{8}}{2}=1+\sqrt{2}\\x_4=\dfrac{2-\sqrt{8}}{2}=1-\sqrt{2}\end{matrix}\right.\)
Vậy phương trình có 4 nghiệm :
\(\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{5}}{2}\\x_2=\dfrac{1-\sqrt{5}}{2}\\x_3=1+\sqrt{2}\\x_4=1-\sqrt{2}\end{matrix}\right.\)