§3. Phương trình và hệ phương trình bậc nhất nhiều ẩn

NA

Hệ phương trình {2x3+x2y=32y3+xy2=3 có nghiệm duy nhất (xo;yo) . Tính x3o+y3o. 

HP
20 tháng 2 2021 lúc 12:15

\(\left\{{}\begin{matrix}2x^3+x^2y=3\left(1\right)\\2y^3+xy^2=3\end{matrix}\right.\)

Trừ vế theo vế hai phương trình ta được:

\(2\left(x^3-y^3\right)+\left(x^2y-xy^2\right)=0\)

\(\Leftrightarrow2\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+3xy+2y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\right]=0\left(2\right)\)

Do \(2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\ge0\), đẳng thức xảy ra khi \(x=y=0\)

Thay vào phương trình ta thấy \(x=y=0\) không phải là nghiệm 

\(\Rightarrow2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2>0\)

Khi đó \(\left(2\right)\Leftrightarrow x=y\)

\(\left(1\right)\Leftrightarrow2x^3+x^3=3\Leftrightarrow x=y=1\)

\(\Rightarrow x_0^3+y_0^3=2\)

Bình luận (0)
HQ
20 tháng 2 2021 lúc 9:47

tập làm quen gõ công thức toán học đi bạn? :D 

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
PV
Xem chi tiết
CL
Xem chi tiết
AG
Xem chi tiết
H24
Xem chi tiết