§3. Phương trình và hệ phương trình bậc nhất nhiều ẩn

NL

Tìm giá trị thực của tham số m để hệ phương trình \(\left\{{}\begin{matrix}2x+3y+4=0\\3x+y-1=0\\2mx+5y-m=0\end{matrix}\right.\)có duy nhất một nghiệm

NT
3 tháng 1 2024 lúc 12:33

\(\left\{{}\begin{matrix}2x+3y+4=0\\3x+y-1=0\\2mx+5y-m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+3y=-4\\3x+y=1\\2mx+5y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-12\\6x+2y=2\\2mx+5y-m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=-14\\3x+y=1\\2mx+5y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=1-y=1-\left(-2\right)=3\\2mx+5y-m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-2\\x=1\\2mx+5y-m=0\end{matrix}\right.\)

Để hệ phương trình này có duy nhất 1 nghiệm thì thay x=1 và y=-2 vào 2mx+5y-m=0, ta được:

2m*1+5*(-2)-m=0

=>m-10=0

=>m=10

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
NL
Xem chi tiết
PN
Xem chi tiết