Bài 7: Định lí Pitago

SK

Hai đoạn thẳng AC, BD vuông góc với nhau và cắt nhau tại trung điểm của mỗi đoạn thẳng. Tính các độ dài AB, BC, CD, DA biết AC = 12cm, BD = 16cm ?

TH
30 tháng 5 2017 lúc 11:53

A C B D M

Gọi M là giao của AC và BD

Ta có: AC = 12 cm

M là trung điểm AC => AM = MC = 6 cm

Ta có: BD = 16 cm

M là trung điểm BD => BM = MD = 8 cm

Xét hai tam giác vuông ABM và CBM có:

BM: cạnh chung

AM = CM (cmt)

=> tam giác ABM = tam giác CBM (1)

Xét hai tam giác CBM và ADM có:

AM = MC (cmt)

BMC = AMD (đđ)

BM = MD (cmt)

=> tam giác CBM = tam giác ADM (2)

Xét hai tam giác vuông ADM và CDM có:

CM: chung

AM = MC (cmt)

=> tam giác ADM = tam giác CDM (3)

Từ (1);(2);(3)

=> bốn tam giác ABM; BCM; CAM; DAM bằng nhau

=> AB = BC = CD = DA

Ta có: tam giác ABM vuông

theo định lí pytago ta có:

AB2 = AM2 + BM2

=> AB2 = 62 + 82

=> AB2 = 100

=> AB = 10 cm

Có: AB = BC = CD = DA = 10 cm

Vậy: AB = 10 cm

BC = 10 cm

CD = 10 cm

DA = 10 cm.

Bình luận (0)

Các câu hỏi tương tự
NX
Xem chi tiết
DP
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết
MB
Xem chi tiết
TL
Xem chi tiết