Bài 6: Đối xứng trục

TH

giúp mk vs ạ, mk cảm tạ ạ

undefined

NT
9 tháng 9 2021 lúc 14:33

a: Ta có: M và E đối xứng nhau qua AB

nên AB là đường trung trực của ME

Suy ra: AM=AE(1)

Ta có: M và F đối xứng nhau qua AC

nên AC là đường trung trực của MF

Suy ra: AM=AF(2)

Từ (1) và (2) suy ra AE=AF

b: Xét ΔAME có AM=AE

nên ΔAME cân tại A

mà AB là đường trung trực ứng với cạnh đáy ME

nên AB là tia phân giác của \(\widehat{MAE}\)

Xét ΔAMF có AM=AF

nên ΔAMF cân tại A

mà AC là đường trung trực ứng với cạnh đáy MF

nên AC là tia phân giác của \(\widehat{MAF}\)

Ta có: \(\widehat{EAF}=\widehat{FAM}+\widehat{EAM}\)

\(=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết