Bài 1: Căn bậc hai

H24

giải pt

`a,(x+\sqrt{3})+4(x^2-3)=0`

H24
28 tháng 2 2021 lúc 21:56

`a,(x+\sqrt{3})+4(x^2-3)=0`

`<=>(x+\sqrt{3})+4(x-\sqrt{3})(x+\sqrt{3})=0`

`<=>(x+\sqrt{3})[4(x-\sqrt{3}+1]=0`

`<=>(x+\sqrt{3})(4x-4\sqrt{3}+1)=0`

`<=>` \(\left[ \begin{array}{l}x+\sqrt{3}=0\\4x-4\sqrt{3}+1=0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\sqrt{3}\\4x=4\sqrt{3}-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\sqrt{3}\\x=\sqrt{3}-\dfrac{1}{4}\end{array} \right.\) 

Vậy phương trình có tập nghiệm `S={-\sqrt{3},\sqrt{3}-1/4}`

Bình luận (1)
NT
28 tháng 2 2021 lúc 21:56

\(\Leftrightarrow\left(x+\sqrt{3}\right)+4\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)\left(1+4x-4\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\dfrac{4\sqrt{3}-1}{4}\end{matrix}\right.\)

Bình luận (0)
NT
28 tháng 2 2021 lúc 21:57

a) Ta có: \(\left(x+\sqrt{3}\right)+4\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)+4\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{3}\right)\left(1+4x-4\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=0\\4x+1-4\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\4x=4\sqrt{3}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=\dfrac{4\sqrt{3}-1}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{3};\dfrac{4\sqrt{3}-1}{4}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
MG
Xem chi tiết
ND
Xem chi tiết
HT
Xem chi tiết
LT
Xem chi tiết
DL
Xem chi tiết
DH
Xem chi tiết
HH
Xem chi tiết
KH
Xem chi tiết
2S
Xem chi tiết