\(x^2-3x+1=\dfrac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}=0\\ \Leftrightarrow x^2-3x+1=-\dfrac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\\ \Leftrightarrow\left(x^2-3x+1\right)^2=\dfrac{1}{3}\left(x^4+x^2+1\right)\\ \Leftrightarrow x^4+9x^2+1-6x^3-6x+2x^2=\dfrac{1}{3}x^4+\dfrac{1}{3}x^2+\dfrac{1}{3}\\ \Leftrightarrow3x^4+27x^2+3-18x^3-18x+6x^2=x^4+x^2+1\\ \Leftrightarrow2x^4-18x^3+32x^2-18x+2=0\\ \Leftrightarrow x^4-9x^3+16x^2-9x+1=0\\ \Leftrightarrow\left(x^4-2x^3+x^2\right)-\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)-7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-7x+1\right)\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}-\dfrac{45}{4}\right)\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left[\left(x-\dfrac{7}{2}\right)^2-\dfrac{45}{4}\right]\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{2}-\dfrac{3\sqrt{5}}{2}\right)\left(x-\dfrac{7}{2}+\dfrac{3\sqrt{5}}{2}\right)\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{2}-\dfrac{3\sqrt{5}}{2}=0\\x-\dfrac{7}{2}+\dfrac{3\sqrt{5}}{2}=0\\\left(x-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\\x=1\end{matrix}\right.\)
Vậy.....................