\(\dfrac{x^2\left(x+5\right)^2+25x^2-11\left(x+5\right)^2}{\left(x+5\right)^2}=\dfrac{x^4+10x^3+50x^2-11x^2-11.2.5x-11.5.5}{\left(x+5\right)^2}\)
\(\dfrac{\left[x^4-x^3-5x^2\right]+\left[11x^3-11x^2-11.5x\right]+55x^2-55x-5.55}{\left(x+5\right)^2}\)
\(\dfrac{x^2\left(x^2-x-5\right)+11x\left(x^2-x-5\right)+55\left(x^2-x-5\right)}{\left(x+5\right)^2}=\dfrac{\left(x^2-x-5\right)\left(x^2+11x+55\right)}{\left(x+5\right)^2}\)
\(\left[{}\begin{matrix}x^2-x-5=0\left(1\right)\\x^2+11x+55=0\left(2\right)\end{matrix}\right.\)
(2) vô nghiệm
(1)\(\Leftrightarrow\) \(\left[x^2-\dfrac{1}{2}x+\dfrac{1}{4}\right]=\dfrac{21}{4}\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{21}{4}\)
\(\left[{}\begin{matrix}x=\dfrac{1-\sqrt{21}}{2}\\x=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\)
\(x^2+\dfrac{25x^2}{\left(x+5\right)^2}=11\) (ĐKXĐ: \(x\ne-5\))
\(\Leftrightarrow\dfrac{x^2\left(x+5\right)^2+25x^2}{\left(x+5\right)^2}=\dfrac{11\left(x+5\right)^2}{\left(x+5\right)^2}\)
\(\Rightarrow x^4+10x^3+25x^2+25x^2-11x^2-110x-275=0\\ \Leftrightarrow x^4+10x^3+39x^2-110x-275=0\)
mình ko biết phân tích sao nữa
Ta có: \(x^{2^{ }}+\dfrac{25x^2}{\left(x+5\right)^2}=11\)
ĐKXĐ: x\(\ne\)-5
<=> \(x^2-2x\dfrac{5x}{x+5}+\dfrac{25x^2}{\left(x+5\right)^2}+2x\dfrac{5x}{x+5}=11\)
<=> \(\left(x-\dfrac{5x}{x+5}\right)^2+10\dfrac{x^2}{x+5}=11\)
<=> \(\left(\dfrac{x^2}{x+5}\right)^2+10\dfrac{x^2}{x+5}=11\)
Gọi \(\dfrac{x^2}{x+5}=t\)
=> t2+10t = 11
<=> t2+10t-11=0
<=> (t-1)(t+1)+10(t-1)=0
<=>(t-1)(t+11)=0
=>\(\left[{}\begin{matrix}t-1=0\\t+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-11\end{matrix}\right.\)
hay: \(\left[{}\begin{matrix}\dfrac{x^2}{x+5}=1\\\dfrac{x^2}{x+5}=-11\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{21}}{2}\\x=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\)