Bài 5: Phương trình chứa ẩn ở mẫu

LY
      Giải phương trình:A)  2/4-x^2 1/x^2-2x=x-4/x^2 2xB)2/x-1 3x^2/x^3-1=x/x^2 x 1 
H24
1 tháng 3 2021 lúc 21:18

`2/(4-x^2)+1/(x^2-2x)=(x-4)/(x^2+2x)(x ne 0,+-2)`

`<=>(2x)/(4x-x^3)+(x+2)/(x^3-4x)=(x^2-6x+8)/(x^3-4x)`

`<=>-2x+x+2=x^2-6x+8`

`<=>x^2-7x+10=0`

`<=>x^2-2x-5x+10=0`

`<=>x(x-2)-5(x-2)=0`

`<=>(x-2)(x-5)=0`

Vì `x ne 2=>x-2 ne 0`

`=>x-5=0`

`=>x=5`

Vậy `S={5}`

Bình luận (0)
NT
1 tháng 3 2021 lúc 21:36

b) ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{2}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

Suy ra: \(2x^2+2x+1-3x^2-x^2+x=0\)

\(\Leftrightarrow-2x^2+x+1=0\)

\(\Leftrightarrow-2x^2+2x-x+1=0\)

\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=-\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

Bình luận (1)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
DA
Xem chi tiết