\(x^4+2018x^2-2018=0\)
Đặt \(x^2=a\left(a\ge0\right)\)
\(a^2+2018a-2018=0\)
\(\Leftrightarrow\left(a+2018a+1009^2\right)-1009^2-2018=0\)
\(\Leftrightarrow\left(a+1009\right)^2-\text{1020099}=0\)
\(\Leftrightarrow\left(a+1009-\sqrt{1020099}\right)\left(a+1009+\sqrt{1020099}\right)=0\)
\(\Leftrightarrow a=\sqrt{1020099}-1009\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{1020099}-1009}\\x=-\sqrt{\sqrt{1020099}-1009}\end{matrix}\right.\)