Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

MT

Giải phương trình vô tỷ sau:

\(\sqrt[3]{3x^2-x+2001}\) - \(\sqrt[3]{3x^2-7x+2002}\) - \(\sqrt[3]{6x-2003}\) = \(\sqrt[3]{2002}\)

( MN GIÚP MÌNH NHA , MÌNH ĐANG CẦN GẤP )

( CẢM ƠN)

H24
11 tháng 7 2018 lúc 9:46

Dùng hđt \(\sqrt[3]{a}-\sqrt[3]{b}=\dfrac{a-b}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)\(\sqrt[3]{a}+\sqrt[3]{b}=\dfrac{a+b}{\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}}\)

Ta có:

\(\sqrt[3]{3x^2-x+2001}-\sqrt[3]{3x^2-7x+2002}=\sqrt[3]{6x+2003}+\sqrt[3]{2002}=0\)

\(\Leftrightarrow\dfrac{6x-1}{\sqrt[3]{\left(3x^2-x+2001\right)^2}+\sqrt[3]{\left(3x^2-x+2001\right)\left(3x^2-7x+2002\right)}+\sqrt[3]{\left(3x^2-7x+2002\right)^2}}=\dfrac{6x-1}{\sqrt[3]{\left(6x+2003\right)^2}-\sqrt[3]{2002.\left(6x+2003\right)}+\sqrt[3]{2002^2}}\)

\(\Leftrightarrow x=\dfrac{1}{6}\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
BA
Xem chi tiết
BY
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết