Bài 4: Liên hệ giữa phép chia và phép khai phương

TH

giải phương trình:

\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

PL
29 tháng 8 2018 lúc 18:41

\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có : \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(x-2\right)^2\ge0\forall x\\\left(x-2\right)^2\ge0\forall x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+1\ge1\\\left(x-2\right)^2+4\ge4\\\left(x-2\right)^2+5\ge5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+2\right)^2+1}\ge1\\\sqrt{\left(x+2\right)^2+4}\ge2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{matrix}\right.\)\(\Rightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\ge3+\sqrt{5}\)

Đẳng thức xảy ra khi : \(x-2=0\Leftrightarrow x=2\)

KL..........

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết
ND
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết