Bài 1: Căn bậc hai

NH

Giai phuong trinh

\(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)

AH
30 tháng 9 2017 lúc 22:10

Lời giải:

Đặt \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\). Khi đó :

\(6x-9x^2=a^2-b^2\)

PT tương đương:

\(a+b=a^2-b^2\)

\(\Leftrightarrow (a+b)[1-(a-b)]=0\)

\(\Leftrightarrow \) \(\left[{}\begin{matrix}a+b=0\\a-b=1\end{matrix}\right.\)

+) Nếu \(a+b=0\Leftrightarrow \sqrt {6x-1}+\sqrt{9x^2-1}=0\)

\(\sqrt{6x-1}\geq 0; \sqrt{9x^2-1}\geq 0\) nên điều trên xảy ra khi mà

\(\sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)

+) Nếu \(a-b=1\Leftrightarrow \sqrt{6x-1}-\sqrt{9x^2-1}=1\)

\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)

\(\Leftrightarrow 6x-1=9x^2-1+1+2\sqrt{9x^2-1}\)

\(\Leftrightarrow 9x^2-6x+1+2\sqrt{9x^2-1}=0\)

\(\Leftrightarrow (3x-1)^2+2\sqrt{(3x-1)(3x+1)}=0\)

\((3x-1)^2\geq 0; \sqrt{(3x-1)(3x+1)}\geq 0\) nên điều trên xảy ra khi mà:

\((3x-1)^2=\sqrt{(3x-1)(3x+1)}=0\Leftrightarrow x=\frac{1}{3}\)

Thử lại thấy đúng.

Vậy \(x=\frac{1}{3}\)

Bình luận (1)

Các câu hỏi tương tự
NP
Xem chi tiết
VT
Xem chi tiết
HL
Xem chi tiết
DY
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết