Lời giải:
Đặt \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\). Khi đó :
\(6x-9x^2=a^2-b^2\)
PT tương đương:
\(a+b=a^2-b^2\)
\(\Leftrightarrow (a+b)[1-(a-b)]=0\)
\(\Leftrightarrow \) \(\left[{}\begin{matrix}a+b=0\\a-b=1\end{matrix}\right.\)
+) Nếu \(a+b=0\Leftrightarrow \sqrt {6x-1}+\sqrt{9x^2-1}=0\)
Vì \(\sqrt{6x-1}\geq 0; \sqrt{9x^2-1}\geq 0\) nên điều trên xảy ra khi mà
\(\sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
+) Nếu \(a-b=1\Leftrightarrow \sqrt{6x-1}-\sqrt{9x^2-1}=1\)
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Leftrightarrow 6x-1=9x^2-1+1+2\sqrt{9x^2-1}\)
\(\Leftrightarrow 9x^2-6x+1+2\sqrt{9x^2-1}=0\)
\(\Leftrightarrow (3x-1)^2+2\sqrt{(3x-1)(3x+1)}=0\)
Vì \((3x-1)^2\geq 0; \sqrt{(3x-1)(3x+1)}\geq 0\) nên điều trên xảy ra khi mà:
\((3x-1)^2=\sqrt{(3x-1)(3x+1)}=0\Leftrightarrow x=\frac{1}{3}\)
Thử lại thấy đúng.
Vậy \(x=\frac{1}{3}\)