H24

giải hpt:

\(\left\{{}\begin{matrix}\left|xy-10\right|=20-x^2\\xy=5+y^2\end{matrix}\right.\)

HN
7 tháng 3 2017 lúc 10:25

Điều kiện: \(20-x^2\ge0\Leftrightarrow-2\sqrt{5}\le x\le2\sqrt{5}\)

Với \(xy-10< 0\)thì ta có

\(\left\{\begin{matrix}xy-10=x^2-20\left(1\right)\\xy=5+y^2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ta được

\(x^2+y^2-2xy=5\)

\(\Leftrightarrow\left(x-y\right)^2=5\)

\(\Leftrightarrow\left[\begin{matrix}x-y=-\sqrt{5}\\x-y=\sqrt{5}\end{matrix}\right.\)

Tới đây thì đơn giản rồi nhé. B làm phần còn lại nhé

Trường hợp còn lại thì tương tự

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết