HA

Giải hpt:

\(\left\{\begin{matrix}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{matrix}\right.\)

AH
1 tháng 2 2017 lúc 2:10

Xét PT bậc $2$ ẩn $x$ là \(2x^2+x(y-5)-y^2+y+2=0\)\(\Delta =(3y-3)^2\) nên dễ dàng phân tích thành nhân tử.

PT \((1)\Leftrightarrow (x+y-2)(2x-y-1)=0\) \(\Rightarrow \left[ \begin{array}{ll} x+y=2 \\ \\ 2x-y-1=0 \end{array} \right.\)

Nếu \(x+y=2\). Thay vào PT \((2)\Rightarrow xy=1\). Từ đó dễ dàng thu được \((x,y)=(1,1)\)

Nếu \(2x-1=y\). Thay vào PT $(2)$ suy ra \(5x^2-x-4=0\Rightarrow x=1\) hoặc \(x=\frac{-4}{5}\). Tương ứng \(y=1\)\(\frac{-13}{5}\)

Vậy HPT có nghiệm \((x,y)=(1,1),(\frac{-4}{5},\frac{-13}{5})\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
TK
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
TB
Xem chi tiết
MH
Xem chi tiết
HA
Xem chi tiết