TK

Bài 1 giải hệ phương trình

a,\(\left\{\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

b,\(\left\{\begin{matrix}\left(x+y\right)^2-4x-4y=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)

TB
23 tháng 2 2017 lúc 19:53

a. \(\left\{\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(y-2\right)\left(x-1\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y-2=0\\x-1=0\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}y=2\\x=1\end{matrix}\right.\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}y=2\\3x+y=8\end{matrix}\right.\\\left\{\begin{matrix}x=1\\3x+y=8\end{matrix}\right.\end{matrix}\right.\)

Giải hệ phương trình ta được:

\(\left[\begin{matrix}\left\{\begin{matrix}y=2\\x=2\end{matrix}\right.\\\left\{\begin{matrix}x=1\\y=5\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình đã cho có tập nghiệm \(S=\left\{\left(2;2\right),\left(1;5\right)\right\}\)

Bình luận (0)
LF
23 tháng 2 2017 lúc 21:17

b)\(\text{HPT}\Leftrightarrow \)\(\left\{\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}a^2-4a=12\\b^2-2b=3\end{matrix}\right.\)\(\left(\left\{\begin{matrix}a=x+y\\b=x-y\end{matrix}\right.\right)\)

\(\Leftrightarrow\left\{\begin{matrix}\left[\begin{matrix}a=-2\\a=6\end{matrix}\right.\\\left[\begin{matrix}b=3\\b=-1\end{matrix}\right.\end{matrix}\right.\) Thay vào ...

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
MH
Xem chi tiết
TK
Xem chi tiết
LT
Xem chi tiết
AT
Xem chi tiết
VD
Xem chi tiết
LT
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết