ĐKXĐ: \(\left\{{}\begin{matrix}x< >0\\y>=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{3x}+\dfrac{1}{3}\sqrt{y+3}=\dfrac{1}{4}\\\dfrac{5}{6x}+\sqrt{y+3}=\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{x}+\sqrt{y+3}=\dfrac{3}{4}\\\dfrac{5}{6x}+\sqrt{y+3}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}\cdot\dfrac{1}{x}=\dfrac{3}{4}-\dfrac{2}{3}=\dfrac{1}{12}\\\dfrac{1}{x}+\sqrt{y+3}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\\\dfrac{1}{x}+\sqrt{y+3}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\sqrt{y+3}=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y+3=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{47}{16}\end{matrix}\right.\)