KP

Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{3}{\sqrt[]{x+y}}-\dfrac{2}{\sqrt[]{x-y}}=4\\\dfrac{2}{\sqrt[]{x+y}}+\dfrac{1}{\sqrt[]{x-y}}=5\end{matrix}\right.\)

H9
13 tháng 7 2023 lúc 11:01

Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{\sqrt{x+y}}-\dfrac{2}{\sqrt{x-y}}=4\\\dfrac{2}{\sqrt{x+y}}-\dfrac{1}{\sqrt{x-y}}=5\end{matrix}\right.\)

Đặt: \(t=\sqrt{x+y}\) và \(k=\sqrt{x-y}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{t}-\dfrac{2}{k}=4\\\dfrac{2}{t}+\dfrac{1}{k}=5\end{matrix}\right.\)

Ta lại đặt: \(a=\dfrac{1}{t}\) và \(u=\dfrac{1}{k}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\2a+u=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\4a+2u=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\7a=14\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-2u=4\\a=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\a=2\end{matrix}\right.\)

Mà: 

\(u=1\Rightarrow\dfrac{1}{k}=1\Rightarrow k=1\)

\(a=2\Rightarrow\dfrac{1}{t}=2\Rightarrow t=\dfrac{1}{2}\)

Ta lại có:

\(k=1\Rightarrow\sqrt{x+y}=1\)

\(t=\dfrac{1}{2}\Rightarrow\sqrt{x-y}=\dfrac{1}{2}\)

Ta có hệ:

\(\left\{{}\begin{matrix}\sqrt{x-y}=1\\\sqrt{x+y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x+y=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\2x=\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{8}-y=1\\x=\dfrac{5}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{8}\\x=\dfrac{5}{8}\end{matrix}\right.\)

Vậy \(x-\dfrac{5}{8};y=-\dfrac{3}{8}\)

Bình luận (0)
NT
13 tháng 7 2023 lúc 10:52

Đặt 1/căn x+y=a; 1/căn x-y=b

Theo đề, ta có hệ:

3a-2b=4 và 2a+b=5

=>a=2 và b=1

=>x+y=1/4 và x-y=1

=>x=5/8 và y=-3/8

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết