Bài 8: Rút gọn biểu thức chứa căn bậc hai

VN

giải hệ phương trình \(\left\{{}\begin{matrix}\frac{5}{\sqrt{x-2}}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x-2}}-\frac{3-x-y}{x+y}=\frac{7}{2}\end{matrix}\right.\)

NL
7 tháng 6 2020 lúc 20:43

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{\sqrt{x-2}}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x-2}}-\frac{3}{x+y}+1=\frac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{\sqrt{x-2}}-\frac{2}{x+y}=4\\\frac{4}{\sqrt{x-2}}-\frac{3}{x+y}=\frac{5}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-2}}=u>0\\\frac{1}{x+y}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5u-2v=4\\4u-3v=\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=1\\v=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-2}}=1\\\frac{1}{x+y}=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\x+y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
LS
Xem chi tiết
TT
Xem chi tiết
BM
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
KB
Xem chi tiết
TN
Xem chi tiết
HA
Xem chi tiết