Bài 1: Căn bậc hai

LM

Giải hệ phương trình; \(\left\{{}\begin{matrix}2\sqrt{x}+\sqrt{y}=3\\3x^4+\left(x-y\right)^2=6x^3y+y^2\end{matrix}\right.\)

AH
13 tháng 7 2020 lúc 0:06

Lời giải:
Xét PT số $2$:

$3x^4+(x-y)^2=6x^3y+y^2$

$\Leftrightarrow 3x^4-6x^3y+(x-y)^2-y^2=0$

$\Leftrightarrow 3x^3(x-2y)+(x-y-y)(x-y+y)=0$

$\Leftrightarrow 3x^3(x-2y)+x(x-2y)=0$

$\Leftrightarrow x(x-2y)(3x^2+1)=0$

Dễ thấy $3x^2+1>0$ nên $x(x-2y)=0$

$\Rightarrow x=0$ hoặc $x=2y$

TH1: $x=0$. Thay vào PT $(1)$ thì $\sqrt{y}=3\Rightarrow y=9$. Ta có nghiệm $(x,y)=(0,9)$

TH2: $x=2y$. Thay vào PT $(1)$ thì: $2\sqrt{2y}+\sqrt{y}=3$

$\Leftrightarrow \sqrt{y}(2\sqrt{2}+1)=3$

$\Rightarrow y=\frac{81-36\sqrt{2}}{49}$

$\Rightarrow x=\frac{162-72\sqrt{2}}{49}$

Vậy..........

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
VC
Xem chi tiết
VC
Xem chi tiết
TB
Xem chi tiết
VC
Xem chi tiết
VC
Xem chi tiết
BM
Xem chi tiết
BO
Xem chi tiết
QL
Xem chi tiết