Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

NC

giải hệ \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)

AH
27 tháng 11 2017 lúc 1:23

Lời giải:

Nếu \(x=0\Rightarrow x^2y^2=-1\) (vô lý)

Nếu \(y=0\Rightarrow 6x^2=0\Leftrightarrow x=0\).Thay vào pt (2) thì \(1=5x^2=0\) (vô lý)

Vậy \(x,y\neq 0\)

PT tương đương: \(\left\{\begin{matrix} y(1+xy)=6x^2\\ (xy+1)^2-2xy=5x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy+1=\frac{6x^2}{y}\\ (xy+1)^2-2xy=5x^2\end{matrix}\right.\)

\(\Rightarrow \left(\frac{6x^2}{y}\right)^2-2xy=5x^2\)

\(\Leftrightarrow \frac{36x^3}{y^2}-2y=5x\) (do \(x\neq 0\) )

\(\Leftrightarrow 36x^3-2y^3=5xy^2\)

Đặt \(x=ty\Rightarrow 36t^3y^3-2y^3-5ty^3=0\)

\(\Leftrightarrow 36t^3-2-5t=0\) (do \(y\neq 0\) )

\(\Leftrightarrow (2t-1)(18t^2+9t+2)=0\)

Thấy rằng \(18t^2+9t+2=18(t+\frac{1}{4})^2+\frac{7}{8}>0\) nên \(2t-1=0\)

\(\Leftrightarrow t=\frac{1}{2}\Leftrightarrow x=\frac{y}{2}\Leftrightarrow 2x=y\)

Thay vào PT (1)

\(2x+4x^3=6x^2\Leftrightarrow 1+2x^2-3x=0\) (do x khác 0)

\(\Leftrightarrow (2x-1)(x-1)=0\)

Nếu \(x=\frac{1}{2}\Rightarrow y=1\)

Nếu \(x=1\Rightarrow y=2\)

Thử lại thấy thỏa mãn.

Vậy \((x,y)\in \left\{(\frac{1}{2};1); (1;2)\right\}\)

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
AT
Xem chi tiết
TB
Xem chi tiết
DD
Xem chi tiết
NB
Xem chi tiết
LM
Xem chi tiết
VD
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết