HV

loading... giải giúp em, e cảm ơn ạa

NT
23 tháng 7 2024 lúc 10:54

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne1\end{matrix}\right.\)

\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2\cdot\left(x+\sqrt{x}+1\right)}\cdot2\)

\(=\dfrac{x-\sqrt{x}+1+x-\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)

b: \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)

Thay \(x=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{2}{7-4\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+1}\)

\(=\dfrac{2}{8-4\sqrt{3}+2-\sqrt{3}}=\dfrac{2}{10-5\sqrt{3}}=\dfrac{4+2\sqrt{3}}{5}\)

c: P>=2/3

=>\(P-\dfrac{2}{3}>=0\)

=>\(\dfrac{2}{x+\sqrt{x}+1}-\dfrac{2}{3}>=0\)

=>\(\dfrac{1}{x+\sqrt{x}+1}-\dfrac{1}{3}>=0\)

=>\(\dfrac{3-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}>=0\)

=>\(-x-\sqrt{x}+2>=0\)

=>\(x+\sqrt{x}-2< =0\)

=>\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)< =0\)

=>\(\sqrt{x}-1< =0\)

=>0<=x<=1

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>=0\\0< =x< 1\end{matrix}\right.\Leftrightarrow0< =x< 1\)

Bình luận (0)
H9
23 tháng 7 2024 lúc 10:57

\(a.ĐK:x\ge0;x\ne1\\ P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\\ =\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\\ =\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\\ =\dfrac{2}{x+\sqrt{x}+1}\)  

b) \(x=7-4\sqrt{3}=2^2-2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2=\left(2-\sqrt{3}\right)^2\)

\(P=\dfrac{2}{7-4\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+1}=\dfrac{2}{7-4\sqrt{3}+2-\sqrt{3}+1}=\dfrac{2}{10-5\sqrt{3}}\) 

\(c.P\ge\dfrac{2}{3}=>\dfrac{2}{x+\sqrt{x}+1}\ge\dfrac{2}{3}\\ =>\dfrac{1}{x+\sqrt{x}+1}\ge\dfrac{1}{3}\\ < =>x+\sqrt{x}+1\le3\\< =>x+\sqrt{x}-2\le0\\ < =>\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\le0\\ < =>\sqrt{x}-1\le0\\ < =>x\le1\)

Kết hợp với đkxđ thì: 0 <= x < 1 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
GY
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết