H24

loading...giải giúp mình với ạa , mình cảm ơn.

NT
7 tháng 12 2023 lúc 14:57

a: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{KOB}=90^0\)

\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔOCA vuông tại C)

mà \(\widehat{BOA}=\widehat{COA}\)

nên \(\widehat{KOA}=\widehat{KAO}\)

=>KA=KO

d: Xét (O) có

\(\widehat{ACI}\) là góc tạo bởi tiếp tuyến CA và dây cung CI

\(\widehat{CDI}\) là góc nội tiếp chắn cung CI

Do đó: \(\widehat{ACI}=\widehat{CDI}\)

ΔOCA vuông tại C

=>\(CO^2+CA^2=OA^2\)

=>\(CA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Xét ΔACI và ΔADC có

\(\widehat{ACI}=\widehat{ADC}\)

\(\widehat{CAI}\) chung

Do đó: ΔACI đồng dạng với ΔADC

=>\(\dfrac{AC}{AI}=\dfrac{AD}{AC}\)

=>\(AI\cdot AD=AC^2=\left(R\sqrt{3}\right)^2=3R^2\) không đổi

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết