Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

HL

đưa nhân tử ra ngoài dấu căn:

a, \(\sqrt{5\left(1-\sqrt{2}\right)^2}\)

b, \(\sqrt{27\left(2-\sqrt{5}\right)^2}\)

c, \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}\)

d, \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}\)

DH
6 tháng 7 2017 lúc 6:41

a, \(\sqrt{5\left(1-\sqrt{2}\right)^2}=\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\sqrt{5}.\left(1-\sqrt{2}\right)=\sqrt{5}-\sqrt{5}.\sqrt{2}=\sqrt{5}-\sqrt{10}\)

b, \(\sqrt{27\left(2-\sqrt{5}\right)^2}=\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\sqrt{27}.\left(2-\sqrt{5}\right)=2\sqrt{27}-\sqrt{135}\)

c, \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}=\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)

\(=\dfrac{\sqrt{2}}{3-\sqrt{10}}\)

d, \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}=\dfrac{\sqrt{5\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)

\(=\dfrac{\sqrt{5}.\left(1-\sqrt{3}\right)}{2}=\dfrac{\sqrt{5}-\sqrt{15}}{2}\)

Chúc bạn học tốt!!!

Bình luận (0)
TB
6 tháng 7 2017 lúc 11:27

a) \(\sqrt{5\left(1-\sqrt{2}\right)^2}\)

= \(\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)

= \(\sqrt{5}.\left(\sqrt{2}-1\right)\)

= \(\sqrt{10}-\sqrt{5}\)

b) \(\sqrt{27\left(2-\sqrt{5}\right)^2}\)

= \(\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)

= \(\sqrt{27}.\left(\sqrt{5}-2\right)\)

= \(\sqrt{135}-2\sqrt{27}\)

c) \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}\)

= \(\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)

= \(\dfrac{\sqrt{2}}{\sqrt{10}-3}\)

d) \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}\)

= \(\dfrac{\sqrt{5}.\sqrt{\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{5}.\left(\sqrt{3}-1\right)}{2}\)

= \(\dfrac{\sqrt{15}-\sqrt{5}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
HL
Xem chi tiết
NG
Xem chi tiết
PN
Xem chi tiết
HT
Xem chi tiết
KC
Xem chi tiết
NT
Xem chi tiết