Bài 8: Rút gọn biểu thức chứa căn bậc hai

TT

\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

1) Rút gọn 

2) Với gtri nào của a thì P=7 

3) Với gtri nào của a thì P>6

TC
8 tháng 2 2021 lúc 10:50

1) Biểu thức này là P hả?

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

P = \(\dfrac{\sqrt{a^3}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a^3}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a-1}{\sqrt{a}}\right).\left(\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{a-1}\right)\)

\(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\sqrt{a}}\)\(\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)+2a+2}{\sqrt{a}}\)

\(\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1+2a+2}{\sqrt{a}}\)

\(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

2) Để P = 7 với a ∈ ĐKXĐ

⇒ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) = 7

⇔ 2a + 2√a+2 = 7√a

⇔ 2a - 5√a + 2 = 0

⇔ \(\left[{}\begin{matrix}a=2\\a=\dfrac{1}{2}\end{matrix}\right.\)( thoả mãn ĐKXĐ)

Vậy...

3) Để P > 6 với a ∈ ĐKXĐ

⇒ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) >6

⇔ \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\) - 6 > 0

⇔ \(\dfrac{2a+2\sqrt{a}-6\sqrt{a}+2}{\sqrt{a}}>0\)

Mà √a > 0 với ∀a ∈ ĐKXĐ

⇒ 2a - 4√a + 2 >0

⇔ 2(√a - 1)2 > 0

Do 2(√a - 1)2 ≥ 0 với ∀a ∈ ĐKXĐ

Nên để 2(√a - 1)2 > 0 ⇔ 2(√a - 1)2 ≠ 0

⇔ a ≠ 1

Đối chiếu ĐKXĐ ta được: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

Vậy để P > 6 thì a ∈ ĐKXĐ

 

Bình luận (0)
NT
8 tháng 2 2021 lúc 13:15

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

1) Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\left(\dfrac{a}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\left(\dfrac{a+2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}}+\dfrac{2a+2}{\sqrt{a}}\)

\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

2) Để P=7 thì \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\)

\(\Leftrightarrow2a+2\sqrt{a}+2=7\sqrt{a}\)

\(\Leftrightarrow2a+2\sqrt{a}-7\sqrt{a}+2=0\)

\(\Leftrightarrow2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow2a-4\sqrt{a}-\sqrt{a}+2=0\)

\(\Leftrightarrow2\sqrt{a}\left(\sqrt{a}-2\right)-\left(\sqrt{a}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(2\sqrt{a}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-2=0\\2\sqrt{a}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=2\\2\sqrt{a}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\\\sqrt{a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4\left(nhận\right)\\a=\dfrac{1}{4}\left(nhận\right)\end{matrix}\right.\)

Vậy: Để P=7 thì \(a\in\left\{4;\dfrac{1}{4}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
VT
Xem chi tiết
PN
Xem chi tiết
HH
Xem chi tiết
PN
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết