Bài 8: Rút gọn biểu thức chứa căn bậc hai

H24

Rút gọn biểu thức:

\(\dfrac{\sqrt{a-2}+2}{3}\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)

LH
8 tháng 6 2021 lúc 10:48

Đk:\(a>2\)

\(\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)

Đặt \(b=\sqrt{a-2}\Leftrightarrow a=b^2+2\)

Biểu thức \(\Leftrightarrow\dfrac{b+2}{3}\left(\dfrac{b}{3+b}+\dfrac{b^2+2+7}{11-b^2-2}\right):\left(\dfrac{3b+1}{b^2-3b}-\dfrac{1}{b}\right)\)

\(=\dfrac{b+2}{3}\left[\dfrac{b}{3+b}-\dfrac{b^2+9}{b^2-9}\right]:\left[\dfrac{3b+1}{b\left(b-3\right)}-\dfrac{b-3}{b\left(b-3\right)}\right]\)

\(=\dfrac{b+2}{3}.\dfrac{b\left(b-3\right)-b^2-9}{\left(b-3\right)\left(3+b\right)}:\dfrac{3b+1-\left(b-3\right)}{b\left(b-3\right)}\)

\(=\dfrac{b+2}{3}.\dfrac{-3\left(b+3\right)}{\left(b-3\right)\left(3+b\right)}.\dfrac{b\left(b-3\right)}{2\left(b+2\right)}\)

\(=-\dfrac{b}{2}\)

\(=\dfrac{\sqrt{a-2}}{-2}\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
EO
Xem chi tiết
NM
Xem chi tiết
LT
Xem chi tiết
NB
Xem chi tiết