Tham khảo:
Chứng minh rằng với mọi góc α (00 ≤ α ≤ 1800) ta đều có cos2 α sin2 α = 1. - Hoc24
Tham khảo:
Chứng minh rằng với mọi góc α (00 ≤ α ≤ 1800) ta đều có cos2 α sin2 α = 1. - Hoc24
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
Cos23a - cos22a = cos(ua).cos(va)
Tính u + 3v
Giúp em với mọi người ơi!!
Chứng minh rằng:
\(\frac{sin\alpha+cos\alpha-1}{sin\alpha-cos\alpha+1}=\frac{cos\alpha}{1+sin\alpha}\)
mọi người giúp mình vs =((
Đơn giản các biểu thức sau:
a) sin a.\(\sqrt{1+tan^2a}\)
b) \(\frac{1-cos^2x}{1-sịn^2x}+tanx.cotx\)
c) \(\frac{1-4sin^2x.cos^2x}{\left(sinx+cosx\right)^2}\)
d) sin(90o-x)+cos(1800-x)+sin2x(1+tan2x)-tan2x
Chứng minh rằng
\(\dfrac{sin}{1+cos} + cot = \dfrac{1}{sin} \)
Ví dụ 3: Chứng minh rằng biểu thức sau độc lập với x,y: A= \(\frac{\cos^2x-\sin^2y}{sin^2x\cdot sin^2y}-cot^2x\cdot cot^2y\)
chứng minh các biểu thức sau không phụ thuộc vào α
A=\(\dfrac{\sin^4\alpha+\cos^4\alpha-1}{\sin^6\alpha+\cos^6\alpha+3\cos^4\alpha-1}\)
B=\(\cot^230\left(\sin^8\alpha-\cos^8\alpha\right)+4\cos60\left(\cos^6\alpha-\sin^6\alpha\right)-\sin^6\left(90-\alpha\right)\left(\tan^2-1\right)^3\)
chứng minh biểu thức không phụ thuộc vào x
\(A=2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
\(B=sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(C=\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
\(D=\frac{1}{cos^6x}-tan^6x-\frac{tan^2x}{cos^2x}\)
Cho sin x + cos x =5/4 . Tính giá trị của biểu thức : A = sin x . cos x , B = sin x - cos x