\(a^2+b^2+2\ge2\left(a+b\right)\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=1\)
\(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\Leftrightarrow\left(a+b\right)\left(a^2+b^2\right)\le2\left(a^3+b^3\right)\)
\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\("="\Leftrightarrow a=b\)