Bài 4: Bất phương trình bậc nhất một ẩn.

LN

a) cho a,b,c > 0, chứng minh rằng:
\(\frac{-a+b+c}{2a}+\frac{a-b+c}{2b}+\frac{a+b-c}{2c}\)\(\frac{3}{2}\)
b) cho x,y,z > 0, tìm giá trị nhỏ nhất của biểu thức:
P= \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)

KB
7 tháng 4 2019 lúc 10:35

a ) Đặt A = \(\frac{-a+b+c}{2a}+\frac{a-b+c}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}\left(-1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}-1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}-1\right)\)

\(=\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}-3\right)\)

Do a ; b ; c > 0 , áp dụng BĐT Cô - si cho các cặp số dương , ta có :

\(A\ge\frac{1}{2}\left[2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}+2\sqrt{\frac{a}{c}.\frac{c}{a}}-3\right]=\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

b ) \(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)

( áp dụng BĐT Cauchy - Schwarz )

Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết
MP
Xem chi tiết
NA
Xem chi tiết
TL
Xem chi tiết
KR
Xem chi tiết
LN
Xem chi tiết