BM

Chứng minh rằng với mọi a,b,c thì : 

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

 

HN
11 tháng 9 2016 lúc 9:37

Đặt \(x=a+b+c;y=ab+bc+ac;z=abc\)

Suy ra : \(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

\(\Leftrightarrow2\left(1+z\right)+\sqrt{2\left(x^2+y^2+z^2-2xz-2y+1\right)}\ge x+y+z+1\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-2xz-2y+1\right)\ge\left(x+y-z-1\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2-2xy-2xz+2x+2yz-2y-2z+1\ge0\)

\(\Leftrightarrow\left(x-y-z+1\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NV
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết