Giả sử AB và CD là các dây song song của đường tròn (O).
Kẻ OI ⊥ AB (I ∈ AB) và OK ⊥ CD (K∈CD).
Do AB //CD nên I,O,K thẳng hàng.
Do các tamgiác OAB, OCD là các tam giác cân đỉnh O nên các đường cao kẻ từ đỉnh đồng thời là phân giác.
Vì vậy ta có: Góc ∠O1 = ∠O2, ∠O3 = ∠O4
Giả sử AB nằm ngoài góc COD, ta có: ∠AOC = 1800 – (∠O1 + ∠O3) = 1800 -(∠O2 + ∠O4) = ∠BOD
Suy ra cung AC= cung BD.
Nghĩa là hai cung bị chắn giữa hai dây song song thì bằng nhau. Các trường hợp khác ta chứng minh tương tự.
Bài này có 2 TH, ta phải xét cả 2 TH (vì ko có ghi rõ đề):
TH 1:
Xét Δ
AOB có:
OA = OB (cùng bán kính)
Do đó: Δ
AOB cân tại A
⇒
ˆOAB=ˆOBA
Ta có: ˆAOM=ˆOBA
(2 góc so le trong do AB//MN)
ˆNOB=ˆOBA
( // )
mà ˆOAB=ˆOBA
(cmt)
⇒
ˆMOA=ˆNOB
(1)
CM tương tự, ta được: ˆMOC=ˆNOD
(2)
Từ (1) và (2) suy ra \(\widehat{AOC}=\widehat{BOD}\)
⇒ \(\widebat{AC}=\widebat{BD}\)
TH 2 :
CM y như câu a) (mà chỉ thay đổi cách CM \(\widehat{AOC}=\widehat{BOD}\) )