Bài 4: Cấp số nhân

HT

Chứng minh rằng : Nếu \(0 > N\)\(\ne1\) điều kiện ắt có và đủ để ba số dương a, b, c tạo thành một cấp số nhân (theo thứ tự đó) là :

\(\frac{\log_aN}{\log_cN}=\frac{\log_aN-\log_bN}{\log_bN-\log_cN}\) \(\left(a,b,c\ne1\right)\)

MK
21 tháng 4 2016 lúc 11:21

Theo giả thiết, nếu ba dố a, b, c lập thành cấp số nhân thì : \(ac=b^2\)(1)

Lấy Logarit cơ số N hai vế của (1) ta có :

\(\Leftrightarrow\log_N\left(ac\right)=\log_Nb^2\Leftrightarrow\log_Na+\log_Nc=2\log_Nb\left(2\right)\)

Sử dụng công thức đổi cơ số :

Từ (2) \(\Leftrightarrow\frac{1}{\log_aN}+\frac{1}{\log_cN}=\frac{2}{\log_bN}\Leftrightarrow\frac{1}{\log_aN}-\frac{1}{\log_bN}=\frac{1}{\log_bN}-\frac{1}{\log_cN}\)

           \(\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_aN}.\frac{1}{\log_bN}}=\frac{\log_cN-\log_bN}{\frac{1}{\log_cN}.\frac{1}{\log_bN}}\Leftrightarrow\frac{\log_bN-\log_aN}{\frac{1}{\log_cN}-\frac{1}{\log_bN}}=\frac{\log_aN}{\log_cN}\)

           \(\Rightarrow\frac{\log_aN-\log_bN}{\frac{1}{\log_bcN}-\frac{1}{\log_cN}}=\frac{\log_aN}{\frac{1}{\log_cN}}\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
NN
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
DT
Xem chi tiết
SK
Xem chi tiết