Bài 4: Cấp số nhân

SK

Cho dãy số \(\left(u_n\right)=\left(-3\right)^{2n-1}\)

a) Chứng minh dãy số \(\left(u_n\right)\) là cấp số nhân. Nêu nhận xét về tính tăng, giảm của dãy số

b) Lập công thức truy hồi của dãy số

c) Hỏi số -19683 là số hạng thứ mấy của dãy số ?

BV
25 tháng 5 2017 lúc 10:15

a) Có \(u_n=\left(-3\right)^{2n-1}=\left(-3\right)^2.\left(-3\right)^{2n-3}\)\(=9.2^{2\left(n-1\right)-1}=9.u_{n-1}\)
Vì vậy \(\left(u_n\right)\) là dãy số nhân với \(u_1=\left(-3\right)^{2.1-1}=-3\)\(q=9\).
b) Công thức truy hồi của dãy số \(\left(u_n\right)\)\(u_n=9u_{n-1}\).
c) Có \(u_n=\left(-3\right)^{2n-1}=-19683=\left(-3\right)^9\)\(\Leftrightarrow2n-1=9\)\(\Leftrightarrow n=5\).
Vậy số hạng thứ 5 bằng \(-19683\).

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
AN
Xem chi tiết
IE
Xem chi tiết
SK
Xem chi tiết