Ôn tập: Phương trình bâc nhất một ẩn

VD

Chứng minh rằng khi m thay đổi các đường thẳng (d) có phương trình (-5m + 4) x + (3m-2) y +3m-4 = 0 luôn đi qua 1 điểm cố định

NH
11 tháng 2 2020 lúc 10:06

Gọi M (x\(_M,y_M\) )là điểm cố dịnh mà đường thẳng đi qua

\(\Rightarrow\left(-5m+4\right)x_M+\left(3m-2\right)y_M+3m-4=0\) \(\forall m\in R\)

\(\Leftrightarrow-5mx_M+4x_M+3my_M-2y_M+3m-4=0\) \(\forall m\in R\)

\(\Leftrightarrow\left(-5mx_M+3my_M+3m\right)+\left(4x_M-2y_M-4\right)=0\) \(\forall m\in R\)

\(\Leftrightarrow m\left(-5x_M+3y_M+3\right)+2\left(2x_M-y_M-2\right)=0\) \(\forall m\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5x_M+3y_M+3=0\\2x_M-y_M-2=0\end{matrix}\right.\) \(\forall m\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_M=3\\y_M=4\end{matrix}\right.\)

Vậy \(M\left(3;4\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DT
Xem chi tiết
NL
Xem chi tiết
HQ
Xem chi tiết
NG
Xem chi tiết
LH
Xem chi tiết
NK
Xem chi tiết
MQ
Xem chi tiết
MC
Xem chi tiết
GV
Xem chi tiết