Tập xác định \(D=R\backslash\left\{2-m\right\}\)
Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)
a) Tiếp tuyến tại điểm có hoành độ x = 1 song song với đường thẳng :
\(y=x+1\) khi \(y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(x+m-2\right)^2}=-1\Leftrightarrow m=0;m=2\)
* Với m = 0 ta có phương trình tiếp tuyến \(y=-\left(x-1\right)-1=-x\)
* Với m = 2 ta có phương trình tiếp tuyến \(y=-\left(x-2\right)+3=-x+5\)
Vậy m = 0 là giá trị cần tìm
b) G\(m\ge1+\sqrt{2};m\le1-\sqrt{2}\)ọi \(M\left(x_0;y_0\right)\) là tiếp điểm. Ta có \(y'\left(x_0\right)=-\frac{1}{2}\)
\(\frac{m^2-2m-1}{\left(x_0+m-2\right)^2}=-\frac{1}{2}\) (*)
Yêu cầu bài toán suy ra (*) vô nghiệm, điều đó xảy ra khi :
\(m^2-2m-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}m\ge1+\sqrt{2}\\m\le1-\sqrt{2}\end{array}\right.\)
Vậy giá trị cần tìm là \(m\le1-\sqrt{2};m\ge1+\sqrt{2}\)