H24

Chứng minh đa thức nhau ko phụ thuộc vào biến

\(\dfrac{\left(x+y\right)^2}{x}.\left[\dfrac{x}{\left(x+y\right)^2}-\dfrac{x}{x^2-y^2}\right]-\dfrac{5x-3y}{y-x}\)

NL
7 tháng 1 2022 lúc 17:07

\(=\dfrac{\left(x+y\right)^2}{x}.\dfrac{x}{\left(x+y\right)^2}-\dfrac{\left(x+y\right)^2}{x}.\dfrac{x}{\left(x+y\right)\left(x-y\right)}-\dfrac{5x-3y}{y-x}\)

\(=1-\dfrac{x+y}{x-y}+\dfrac{5x-3y}{x-y}\)

\(=\dfrac{x-y-x-y+5x-3y}{x-y}=\dfrac{5x-5y}{x-y}=5\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
DV
Xem chi tiết
NA
Xem chi tiết
CD
Xem chi tiết
TH
Xem chi tiết
DV
Xem chi tiết