DV

Chứng minh rằng với những giá trị thích hợp của biến x biểu thức sau có giá trị là một hằng số 

A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^{\text{2}}}\right)\)

NM
13 tháng 11 2021 lúc 7:20

\(ĐK:x\ne\pm y\\ A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{x^2+y^2}=1\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
OA
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết