NP

cho x,y,z >0, x+y+z=1 tìm giá trị lớn nhất của biểu thức

\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

AH
6 tháng 3 2017 lúc 21:21

Lời giải:

Do \(x+y+z=1\) nên biến đổi như sau:

\(P=\frac{x}{(x+y)+(x+z)}+\frac{y}{(y+z)+(y+x)}+\frac{z}{(z+x)+(z+y)}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\Rightarrow \frac{x}{(x+y)+(x+z)}\leq \frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow P\leq \frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{x+z}\right)=\frac{3}{4}\)

Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
KK
6 tháng 3 2017 lúc 21:45

\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

Thay \(x+y+z=1\) vào biểu thức

\(\Rightarrow P=\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\\\dfrac{y}{x+2y+z}=\dfrac{y}{x+y+y+z}\le\dfrac{y}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\\\dfrac{z}{x+y+2z}=\dfrac{z}{x+z+y+z}\le\dfrac{z}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{x}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)+\dfrac{y}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)+\dfrac{z}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

\(\Rightarrow VT\le\dfrac{x}{4\left(x+y\right)}+\dfrac{x}{4\left(x+z\right)}+\dfrac{y}{4\left(x+y\right)}+\dfrac{y}{4\left(y+z\right)}+\dfrac{z}{4\left(x+z\right)}+\dfrac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{x}{4\left(x+y\right)}+\dfrac{y}{4\left(x+y\right)}+\dfrac{x}{4\left(x+z\right)}+\dfrac{z}{4\left(x+z\right)}+\dfrac{y}{4\left(y+z\right)}+\dfrac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{x+y}{4\left(x+y\right)}+\dfrac{x+z}{4\left(x+z\right)}+\dfrac{y+z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow P\le\dfrac{3}{4}\)

Vậy \(P_{max}=\dfrac{3}{4}\)

Dấu '' = '' xảy ra khi \(x=y=z\)

Bình luận (1)
SG
7 tháng 3 2017 lúc 21:19

Áp dụng bđt Cauchy-Schwraz dạng Engel ta có:

\(P=\left(1-\dfrac{1}{x+1}\right)+\left(1-\dfrac{1}{y+1}\right)+\left(1-\dfrac{1}{z+1}\right)\)

\(=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\le3-\dfrac{\left(1+1+1\right)^2}{x+1+y+1+z+1}\)

\(\le3-\dfrac{9}{4}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
PV
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết
MH
Xem chi tiết
MH
Xem chi tiết
TN
Xem chi tiết
LT
Xem chi tiết